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ON q−BERNARDI INTEGRAL OPERATOR

KHALIDA INAYAT NOOR1, SADIA RIAZ1, MUHAMMAD ASLAM NOOR1

Abstract. In this paper, we introduce the q-Bernardi integral operator for analytic functions

using the concept of q-calculus. We also introduce two new classes of analytic functions with

respect to q−derivative. The convexity and integral preserving properties for these classes in

open unit disc are investigated. Special cases of our main results are discussed, which appear to

be new ones. The ideas and techniques of this paper may inspire further research in this field.
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1. Introduction

Quantum calculus or q-calculus is an ordinary calculus without notion of limit. In recent years,

q-calculus attracted attention of many researchers due to its vast applications in Mathematics

and Physics. Jackson [6, 7] introduced and studied the q-derivative and q-integral in systematic

way. A firm footing was actually provided and the basic q- hypergeometric functions were

first used in geometric function theory by Srivastava [18]. Making use of q-derivative, Ismail

[5] introduced and studied a class of q-starlike functions. The q-analogue of close-to-convex

functions is defined in [13]. Sahoo and Sharma [15] obtained several interesting results for q-

close-to-convex functions. Using the convolution of normalized analytic functions, q-operators

are defined with several interesting results, see [2], [3]. Geometric properties of these q-operators

in some classes of analytic functions in compact disc are studied in [10]. Recently, Selvakumaran

et al. [16] introduced the q-integral operators for certain analytic functions in a unit disc,

by using the concept and theory of fractional q-calculus. They also studied some convexity

properties of such q-integral operators for some classes of analytic functions which was defined

by a linear multiplier fractional q-differintegral operator. For the recent work on the usefulness

of q-calculus, see [12, 18] and the references therein. It is an interesting problem to study the

applications of q-calculus to derive integral inequalities for relative harmonic preinvex functions

[11].

Geometric function theory is a highly developed branch of mathematics which suggests the

significance of geometric ideas and problems in complex analysis. These ideas also occur in

real analysis, but geometry has had a greater impact in complex analysis. There are numerous

applications of geometric function theory in other branches of mathematics and physics.

Let A denote the class of functions of the form

f(z) = z +
∞∑
n=2

anz
n, (1)
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analytic in the open unit disc E = {z : |z| < 1}. Let S, C, S∗, K be the subclasses of A of

univalent, convex, starlike, close-to-convex functions, respectively.

Let f ∈ A. Then the operator I : A → A is defined as:

I(f)(z) =
(1 + c)

zc

∫ z

0
tc−1f(t)dt, , c = 1, 2, 3, .... (2)

is called Bernardi integral operator, which was introduced by Bernardi in [4]. He proved that

the subclasses S∗, C, K of S are closed under this operator.

We note that, for c = 1 in (2), we have the Libera integral operator, see [9].

Let f(z) be given by (1.1) and g(z) be defined as

g(z) =

∞∑
n=0

bnz
n.

Then the Hadamard product (or convolution) is defined by

(f ∗ g)(z) =
∞∑
n=0

anbnz
n.

We now recall the basic concepts and results of q-calculus. To be more precise, the q-derivative

of function f ∈ A is defined as, (see [7])

dqf(z) =
f(qz)− f(z)

(q − 1)z
, (z ̸= 0), (3)

and dqf(0) = f ′(0), where q ∈ (0, 1). For a function g(z) = zn, the q-derivative is

dqg(z) = [n]qz
n−1, (4)

where

[n]q =
1− qn

1− q
.

We note that as q → 1−, dqf(z) → f ′(z). Here f ′(z) is ordinary derivative and [n]q → n as

q → 1−. From (1.4) we deduce that

dqf(z) = 1 +
∞∑
n=2

[n]qanz
n. (5)

Jackson [6] introduced the q-integral of a function f as:∫ z

0
f(t)dqt = z(1− q)

∞∑
n=0

qnf(qnz), (6)

provided that series converges.

The subclasses of q-convex and q-starlike functions are defined by, (see ([5]),

S∗
q =

{
f ∈ A : Re

zdqf(z)

f(z)
> 0, z ∈ E

}
,

Cq =

{
f ∈ A : Re

dq(zdqf(z)

dqf(z)
> 0, z ∈ E

}
.

We note that when q −→ 1−, the above classes reduce to well known classes of convex and

starlike functions.



K.I. NOOR et al: ON q−BERNARDI INTEGRAL OPERATOR 5

Let Ω be the family of functions w(z) analytic in the open unit disc E and satisfy the conditions

w(0) = 0, |w(z)| < 1 for z ∈ E. For arbitrary fixed numbers A,B, −1 ≤ B < A ≤ 1, denote

by P (A,B), the class of functions p analytic in E such that

p(z) =
1 +Aw(z)

1 +Bw(z)
(7)

for some functions w(z) ∈ Ω. This class was introduced by Janowski [8].

The aim of this research paper is to introduce and study q-Bernardi integral operator. Using

the q-calculus, we introduce and study some new classes of analytic functions, which can be

viewed as significant generalizations of the previously known classes. We investigate the prop-

erties of q-Bernardi integral operator for these new classes. Several consequences of the main

results are mentioned.

2. Main results

We here define and study some new classes of analytic functions using the concept of q-

calculus.

Definition 2.1. Let f ∈ A. Then f ∈ S∗
q (A,B), if and only if,{

zdqf(z)

f(z)

}
∈ P (A,B), −1 ≤ B < A ≤ 1, z ∈ E. (8)

We note the following.

(i). S∗
q (1− 2α,−1) = S∗

q (α) 0 ≤ α < 1,

=

{
f ∈ A : Re

zdqf(z)

f(z)
> α, z ∈ E

}
, see [1]

(ii). S∗
q (1,−1) = S∗

q =

{
f ∈ A : Re

zdqf(z)

f(z)
> 0, z ∈ E

}
, see [5].

(iii). S∗
q ((1− 2α)β,−β) = S∗

q (α, β), (0 ≤ α < 1), (0 ≤ β < 1)

=

f ∈ A :

∣∣∣∣∣∣
zdqf(z)
f(z) − 1

zdqf(z)
f(z) + 1− 2α

∣∣∣∣∣∣ < β, z ∈ E

 ,

(iv). lim
q→1−

S∗
q (A,B) =

{
f ∈ A : lim

q→1−

zdqf(z)

f(z)
∈ P (A,B)

}
= S∗(A,B), see[9].

Definition 2.2. Let f ∈ A. Then, f ∈ Kq(A,B), if there exists a function g ∈
∩

0<q<1
S∗
q (A,B),

(−1 ≤ B < A ≤ 1, z ∈ E), such that{
zdqf(z)

g(z)

}
∈ P (A,B), (9)

We note the following.
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(i). Kq(1− 2α,−1) = Kq(α) (0 ≤ α < 1)

=

f ∈ A : Re
zdqf(z)

g(z)
> α, g ∈

∩
0<q<1

S∗
q (α), z ∈ E

 ,

(ii). Kq(1,−1) = Kq =

f ∈ A : Re
zdqf(z)

g(z)
> 0, g ∈

∩
0<q<1

S∗
q , z ∈ E

 ,

(iii). q((1− 2α)β,−β) = Kq(α, β), (0 ≤ α < 1), (0 ≤ β < 1)

=

f ∈ A :

∣∣∣∣∣∣
zdqf(z)
g(z) − 1

zdqf(z)
g(z) + 1− 2α

∣∣∣∣∣∣ < β, g ∈
∩

0<q<1

S∗
q (α, β), z ∈ E

 ,

(iv). lim
q→1−

Kq(A,B) =

f ∈ A : lim
q→1−

zdqf(z)

g(z)
∈ P (A,B), g ∈

∩
0<q<1

S∗
q (A,B), z ∈ E


= K(A,B), see[9].

We now define the q-Bernardi integral operator.

Let f ∈ A. Then L : A → A is said to be q-Bernardi integral operator defined by L(f) = F ,

where F is given by

F (z) =
[1 + c]q

zc

∫ z

0
tc−1f(t)dqt (10)

=
∞∑
n=1

(
[1 + c]q
[n+ c]q

)
anz

n, c = 1, 2, 3, ...

We note that, for c = 1 in (10), we have the q-Libera integral operator defined as:

F1(z) =
[2]q
z

∫ z

0
f(t)dqt (11)

=

∞∑
n=1

(
[2]q(1− q)

1− qn+1

)
anz

n, 0 < q < 1, z ∈ E, see [11,17]. (12)

Also the that radius of convergence R of
∑∞

n=1

(
[2]q(1−q)
1−qn+1

)
anz

n and
∑∞

n=1

(
[1+c]q
[n+c]q

)
anz

n is q, for

0 < q < 1 and we have

lim
q−→1−

F(z) =

∞∑
n=1

(1 + c)

(n+ c)
anz

n,

,

lim
q−→1−

F1(z) = z +

∞∑
n=1

2

(n+ 1)
anz

n,

which are defined in [14].

Lemma 2.1. Let N and T be analytic in E, N(0) = T (0) = 0, dqN(0)/dqT (0) = 1, 0 < q < 1.

Then

dqN(z)

dqT (z)
∈ P (A,B),
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implies that

N(z)

T (z)
∈ P (A,B), T ∈

∩
0<q<1

S∗
q (A,B), z ∈ E.

Proof. Consider

dqN(z)

dqT (z)
∈ P (A,B). (13)

For p(z) ∈ P (A,B), we have∣∣∣∣p(z)− 1−ABr2

1−B2r2

∣∣∣∣ < |B −A|r
1−B2r2

, see[9].

On other hand from (13), we can write

dqN(z)

dqT (z)
= p(z). (14)

From (13) and (14), we have

∣∣∣∣dqN(z)

dqT (z)
− a(r)

∣∣∣∣ < b(r), (15)

where

a(r) =
1−ABr2

1−B2r2
, b(r) =

|B −A|r
1−B2r2

.

Choose A(z) so that

A(z)dqT (z) = dqN(z)− a(r)dqT (z) and |A(z)| < b(r).

For fixed z0, z0 ∈ E, let L be the line segment from 0 to T (z0), which maps one sheet of the

starlike image of E by the mapping T , since T ∈
∩

0<q<1
S∗
q (A,B) ⊂ S∗(A,B) ⊂ S∗. Let L−1 be

the pre-image of L under T and let r = max|z|, where z ∈ L−1. Then we have

|N(z0)− a(r)T (z0)| =

∣∣∣∣∫ z0

0
[dqN(t)− a(t)dqT (t)]dqt

∣∣∣∣
=

∣∣∣∣∫ z0

0
[A(t)dqT (t)]dqt

∣∣∣∣
≤

∫ z0

0
|A(t)dqT (t)| dqt

< b(r)|T (z0)|.

It follows that

N(z)

T (z)
∈ P (A,B), z ∈ E.

This completes the proof. �

Lemma 2.2. Let f ∈ S∗
q (A,B). Then

σ(z) =

∫ z

0
tc−1f(t)dqt, −1 ≤ B < A ≤ 1, 0 < q < 1, c = 1, 2, 3..., (16)

is multivalent starlike in E.
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Proof. Consider

dqσ(z) = zc−1f(z),

or

zdqσ(z) = zcf(z).

q-logarithmic differentiation and simple calculation leads us to{
dq(zdqσ(z))

dqσ(z)

}
=

{
[c]q +

zdqf(z)

f(z)

}
∈ P (A,B), (17)

since f(z) ∈ S∗
q (A,B), z ∈ E. Let T (z) = zdqσ(z), N(z) = σ(z) with N(0) = T (0) = 0. From

(17), we have T (z) ∈ S∗
q (A,B) for all q ∈ (0, 1), that is T (z) ∈

∩
0<q<1

S∗
q (A,B), z ∈ E.

Now an application of Lemma 2.3 and using the similar technique with P (A,B) ⊂ Pgiven in

[9], we have {
N(z)

T (z)

}
∈ P (A,B), or

{
zdqσ(z)

σ(z)

}
∈ P (A,B).

That is, σ(z) ∈ S∗
q (A,B) for all q ∈ (0, 1), which implies that σ(z) ∈

∩
0<q<1

S∗
q (A,B) ⊂

S∗(A,B) ⊂ S∗, which shows that σ is p−valently starlike in E. �

Lemma 2.3. For 0 < q < 1, c = 1, 2, 3, .., the function ϕ(z) defined by

ϕ(z) =

∞∑
n=1

[1 + c]q
[c+ n]q

zn, (18)

belongs to the class Cq in E.

Proof. From ratio test, one can see that radius of convergence for
∑∞

n=1
[1+c]q
[c+n]q

zn is q, 0 < q < 1,

we have

zdqϕ(z) =

∞∑
n=1

[1 + c]q(1− qn)

(1− qn+c)
zn.

Now q-logarithmic differentiation and simple computation gives us

Re

{
dq(zdqϕ(z)

dqϕ(z)

}
=

∞∑
n=1

(
1− qn

1− q

)
=

∞∑
n=1

(1 + q + q2 + ...qn−1) > 0,

for 0 < q < 1, z ∈ E. This shows that ϕ ∈ Cq, which is the required result. �

Theorem 2.1. If f ∈ S∗
q (A,B), then the function F (z) defined by

F (z) =
[1 + c]q

zc

∫ z

0
tc−1f(t)dqt, (19)

belongs to the class
∩

0<q<1
S∗
q (A,B), (0 ≤ B < A ≤ 1, z ∈ E).

Proof. Consider

zdqF (z)

F (z)
=

zdqF (z)

F (z)

zc

zc

=
[1 + c]qf(z)− [c]qF (z)

F (z)

=
zcf(z)− [c]qσ(z)

σ(z)
=

N(z)

T (z)
, (20)
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where N(z) = zcf(z)− [c]qσ(z) and T (z) = σ(z), σ(z) is given by (16) is p-valently starlike by

Lemma 2.4. dqN(0)/dqT (0) = zdqf(z)/f(z)|z=0 = 1,

dqN(z)

dqT (z)
=

zdqf(z)

f(z)
∈ P (A,B),

since f(z) ∈ S∗
q (A,B). Thus, Lemma 2.3 leads us

N(z)

T (z)
∈ P (A,B),

It follows that F (z) ∈ S∗
q (A,B) for all q ∈ (0, 1), that is, F (z) ∈

∩
0<q<1

S∗
q (A,B) in E. This

completes the proof. �

For c = 1 in Theorem 2.6, we have the following result, called q-Libera Integral operator, see

[12].

Corollary 2.1. If f ∈ S∗
q (A,B), then the function F1(z) defined by

F1(z) =
[2]q
z

∫ z

0
f(t)dqt, (21)

belongs to the class
∩

0<q<1
S∗
q (A,B), (0 ≤ B < A ≤ 1, z ∈ E).

An application of Theorem 2.6 leads us to the following improved convolution result investi-

gated by Bernardi [4].

Corollary 2.2. Let f ∈ A, and let f ∈ S∗
q (A,B), ϕ ∈ Cq. Then

(f ∗ ϕ)(z) ∈
∩

0<q<1

S∗(A,B),

where ϕ is given by (18).

Proof. We note that q−Bernardi operator L(f) = F given by (2.3) can be written in convolution

form as:

F (z) = ϕ(z) ∗ f(z), (22)

where f is given by (1.1) and ϕ is defined by (18), ϕ belongs to the class Cq, by Lemma 2.5.

Therefore, an application of Theorem 2.6 gives us the desired result. �

Theorem 2.2. Let f ∈ A and let f ∈ Kq(A,B) be q-close-to-convex functions with respect to

g, g ∈
∩

0<q<1
S∗
q (A,B), −1 ≤ B < A ≤ 1,

F (z) =
[1 + c]q

zc

∫ z

0
tc−1f(t)dqt, G(z) =

[1 + c]q
zc

∫ z

0
tc−1g(t)dqt.

Then F belongs to the class of q-close-to-convex functions with respect to G in E.

Proof. Let dqF (z) = [1 + c]qz
−1f(z)− [c]qz

−1F (z). Then

zdqF (z)

Gq(z)
=

[1 + c]qf(z)− [c]qF (z)

G(z)

=
zcf(z)− [c]qσ(z)

η(z)
(23)
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where σ is given by (16), and

η(z) =

∫ z

0
tc−1g(t)dqt,

η(z), G(z) ∈
∩

0<q<1
S∗
q (A,B), by Lemma 2.4 and Theorem 2.6.

By q-differentiation of nominator and denominator of expression given by (23), we have

dq(z
cf(z)− [c]qσ(z))

dq(η(z))
=

zdqf(z)

g(z)
∈ P (A,B), (24)

since f ∈ Kq(A,B) with respect to g, for 0 < q < 1 and z ∈ E. Thus, by an application of

Lemma 2.3, we have the required result. �

If we take c = 1 in Theorem 2.7, then we have the result for q−Libera integral operator [12],

which improves the result of Libera [9].

Corollary 2.3. Let f ∈ A and let f ∈ Kq(A,B) be q−close-to-convex functions with respect

to g, g ∈
∩

0<q<1
S∗(A,B),

F1(z) =
[2]q
z

∫ z

0
f(t)dqt, G1(z) =

[2]q
z

∫ z

0
g(t)dqt.

Then F1 belongs to the class of q−close-to-convex functions with respect to G1 in E.

As an application of Theorem 2.7, we have following:

Corollary 2.4. Let f ∈ A, and let f ∈ Kq(A,B), ϕ ∈ Cq. Then

(f ∗ ϕ)(z) ∈
∩

0<q<1

Kq(A,B),

where ϕ is given by (18) in E.
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